The name Système International d'Unités, (International System of Units) and the abbreviation SI, were established by the 11th General Conference on Weights and Measures (CGPM) in 1960.
The base quantities used in the SI are length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity. The base quantities are by convention assumed to be independent. The corresponding base units of the SI were chosen by the CGPM to be the metre, the kilogram, the second, the ampere, the kelvin, the mole, and the candela. The derived units of the SI are then formed as products of powers of the base units, according to the algebraic relations that define the corresponding derived quantities in terms of the base quantities. When the product of powers includes no numerical factor other than one, the derived units are called coherent derived units.
Symbols for quantities are generally single letters set in an italic font, although they may be qualified by further information in subscripts or superscripts or in brackets. Note that symbols for quantities are only recommendations, in contrast to symbols for units whose style and form is mandatory.
The value of a quantity is expressed as the product of a number and a unit, and the number multiplying the unit is the numerical value of the quantity expressed in that unit. The numerical value of a quantity depends on the choice of unit. Thus the value of a particular quantity is independent of the choice of unit, although the numerical value will be different for different units. The same value of a speed v = dx/dt of a particle might be given by either of the expressions v = 25 m/s = 90 km/h, where 25 is the numerical value of the speed in the unit metres per second, and 90 is the numerical value of the speed in the unit kilometres per hour.
Derived quantity | SI coherent derived unit | ||
---|---|---|---|
Name | Symbol | Name | Symbol |
area | A | square metre | m2 |
volume | V | cubic metre | m3 |
speed, velocity | v | metre per second | m s-1 |
acceleration | a | metre per second squared | m s-2 |
wavenumber | σ | reciprocal metre | m-1 |
density, mass density | ρ | kilogram per cubic metre | kg m-3 |
surface density | ρA | kilogram per square metre | kg m-2 |
specific volume | v | cubic metre per kilogram | m3kg-1 |
current density | j | ampere per square metre | A m-2 |
magnetic field strength | H | ampere per metre | A m-1 |
amount concentration, concentration | c | mole per cubic metre | mol m-3 |
mass concentration | ρ, γ | kilogram per cubic metre | kg m-3 |
luminance | Lv | candela per square metre | cd m-2 |
refractive index | n | (the number) one | 1 |
relative permeability | μr | (the number) one | 1 |
SI coherent derived unit | ||||
---|---|---|---|---|
Derived quantity | Name | Symbol | Expressed in terms of other SI units | Expressed in terms of SI base units |
plane angle | radian | rad | 1 | m m-1 |
solid angle | steradian | sr | 1 | m2 m-2 |
frequency | hertz | Hz | s-1 | |
force | newton | N | m kg s-2 | |
pressure, stress | pascal | Pa | N/m2 | m-1 kg s-2 |
energy, work, amount of heat | joule | J | N m | m2 kg s-2 |
power, radiant flux | watt | W | J/s | m2 kg s-3 |
electric charge, amount of electricity | coulomb | C | s A | |
electric potential difference, electromotive force | volt | V | W/A | m2 kg s-3 A-1 |
capacitance | farad | F | C/V | m-2 kg-1 s4 A2 |
electric resistance | ohm | Ω | V/A | m2 kg s-3 A-2 |
electric conductance | siemens | S | A/V | m-2 kg-1 s3 A2 |
magnetic flux | weber | Wb | V s | m2 kg s-2 A-1 |
magnetic flux density | tesla | T | Wb/m2 | kg s-2 A-1 |
inductance | henry | H | Wb/A | m2 kg s-2 A-2 |
Celsius temperature | degree Celsius | °C | K | |
luminous flux | lumen | lm | cd sr | cd |
luminance | lux | lx | lm/m2 | m-2 cd |
activity referred to a radionuclide | becquerel | Bq | s-1 | |
absorbed dose, specific energy (imparted), kerma | gray | Gy | J/kg | m2 s-2 |
dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equivalent | sievert | Sv | J/kg | m2 s-2 |
catalytic activity | katal | kat | s-1 mol |
SI coherent derived unit | |||
---|---|---|---|
Derived quantity | Name | Symbol | Expressed in terms of SI base units |
dynamic viscosity | pascal second | Pa s | m-1 kg s-1 |
moment of force | newton metre | N m | m2 kg s-2 |
surface tension | newton per metre | N/m | kg s-2 |
angular velocity | radian per second | rad/s | m m-1 s-1 = s-1 |
angular acceleration | radian per second squared | rad/s2 | m m-1 s-2 = s-2 |
heat flux density, irradiance | watt per square metre | W/m2 | kg s-3 |
heat capacity, entropy | joule per kelvin | J/K | m2 kg s-2 K-1 |
specific heat capacity, specific entropy | joule per kilogram kelvin | J/(kg K) | m2 s-2 K-1 |
specific energy | joule per kilogram | J/kg | m2 s-2 |
thermal conductivity | watt per metre kelvin | W/(m K) | m kg s-3 K-1 |
energy density | joule per cubic metre | J/m3 | m -1 kg s-2 |
electric field strength | volt per metre | V/m | m kg s-3 A-1 |
electric charge density | coulomb per cubic metre | C/m3 | m-3 s A |
surface charge density | coulomb per square metre | C/m2 | m-2 s A |
electric flux density, electric displacement | coulomb per square metre | C/m2 | m-2 s A |
permittivity | farad per metre | F/m | m-3 kg-1 s4 A2 |
permeability | henry per metre | H/m | m kg s-2 A-2 |
molar energy | joule per mole | J/mol | m2 kg s-2 mol-1 |
molar entropy, molar heat capacity | joule per mole kelvin | J/(mol K) | m2 kg s-2 K-1 mol-1 |
exposure (x- and γ-rays) | coulomb per kilogram | C/kg | kg-1 s A |
absorbed dose rate | gray per second | Gy/s | m2 s-3 |
radiant intensity | watt per steradian | W/sr | m4 m-2 kg s-3 = m2 kg s-3 |
radiance | watt per square metre steradian | W/(m2 sr) | m2 m-2 kg s-3 = kg s-3 |
catalytic activity concentration | katal per cubic metre | kat/m3 | m-3 s-1 mol |
Quantity | Name of unit | Symbol for unit | Value in SI units |
---|---|---|---|
time, duration | minute | min | 1 min = 60 s |
hour | h | 1 h = 60 min = 3 600 s | |
day | d | 1 d = 24 h = 86 400 s | |
plane angle | degree | ° | 1° = (π/180) rad |
minute | ' | 1' = (1/60)° = (π/10 800) rad | |
second | " | 1" = (1/60)' = (π/648 000) rad | |
area | hectare | ha | 1 ha = 1hm2 = 104 m2 |
volume | litre | L, l | 1 L = 1 dm3 = 10-3 m3 |
mass | tonne | t | 1 t = 103 kg |
Quantity | Name of unit | Symbol for unit | Value in SI units |
---|---|---|---|
Units accepted for use with the SI | |||
energy | electronvolt | eV | 1 eV = 1.602 176 53(14)×10-19 J |
mass | dalton | Da | 1 Da = 1.660 538 86(28)×10-27 kg |
unified atomic mass unit | u | 1 u = 1 Da | |
length | astronomical unit | ua | 1 ua = 1.495 978 706 91(6)×1011 m |
Natural units (n.u.) | |||
speed, velocity | natural unit of speed (speed of light in vacuum) | co | 299 792 458 m s-1 |
action | natural unit of action (reduced Planck constant) | ℏ | 1.054 571 68(18)×10-34 Js |
mass | natural unit of mass (electron mass) | me | 9.109 382 6(16)×10-31 kg |
time, duration | natural unit of time | ℏ/(meco2) | 1.288 088 667 7(86)×10-21 s |
Atomic units (a.u.) | |||
charge | atomic unit of charge, (elementary charge) | e | 1.602 176 53(14)×10-19 C |
mass | atomic unit of mass, (electron mass) | me | 9.109 382 6(16)×10-31 kg |
action | atomic unit of action, (reduced Planck constant) | ℏ | 1.054 571 68(18)×10-34 Js |
length | atomic unit of length, bohr (Bohr radius) | ao | 0.529 177 210 8(18)×10-10 m |
energy | atomic unit of energy, hartree (Hartree energy) | Eh | 4.359 744 17(75)×10-18 J |
time, duration | atomic unit of tim | ℏ/Eh | 2.418 884 326 505(16)×10-17 s |
Quantity | Name of unit | Symbol for unit | Value in SI units |
---|---|---|---|
pressure | bar | bar | 1 bar = 0.1 MPa = 105 Pa |
millimetre of mercury | mmHg | 1 mmHg ≈ 133.322 Pa | |
length | angström | Å | 1 Å = 0.1 nm = 10-10 m |
distance | nautical mile | M | 1 M = 1852 m |
area | barn | b | 1 b = 100 fm2 = 10-28 m2 |
speed, velocity | knot | kn | 1 kn = (1852/3600) m s-1 |
logarithmic ratio quantities | neper | Np | |
bel | B | ||
decibel | dB |
Quantity | Name of unit | Symbol for unit | Value in SI units |
---|---|---|---|
energy | erg | erg | 1 erg = 10-7 J |
force | dyne | dyn | 1 dyn = 10-5 N |
dynamic viscosity | poise | P | 1 P = 1 dyn s cm-2 = 0.1 Pa s |
kinematic viscosity | stokes | St | 1 St = 1 cm2 s-1 = 10-4 m2 s-1 |
luminance | stilb | sb | 1 sb = 1 cd cm-2 = 104 cd m-2 |
illuminance | phot | ph | 1 ph = 1 cd sr cm-2 = 104 lx |
acceleration | gal | Gal | 1 Gal = 1 cm s-2 = 10-2 m s-2 |
magnetic flux | maxwell | Mx | 1 Mx = 1 G cm2 = 10-8 Wb |
magnetic flux density | gauss | G | 1 G = 1 Mx cm-2 = 10-4 T |
magnetic field | œrsted | Oe | 1 Oe ≙ (103/4π) A m-1 |
Factor | Name | Symbol | Factor | Name | Symbol |
---|---|---|---|---|---|
101 | deca | da | 10-1 | deci | d |
102 | hecto | h | 10-2 | centi | c |
103 | kilo | k | 10-3 | milli | m |
106 | mega | M | 10-6 | micro | μ |
109 | giga | G | 10-9 | nano | n |
1012 | tera | T | 10-12 | pico | p |
1015 | peta | P | 10-15 | femto | f |
1018 | exa | E | 10-18 | atto | a |
1021 | zetta | Z | 10-21 | zepto | z |
1024 | yotta | Y | 10-24 | yocto | y |
Names and symbols for decimal multiples and submultiples of the unit of mass are formed by attaching prefix names to the unit name 'gram', and prefix symbols to the unit symbol 'g'.
These SI prefixes refer strictly to powers of 10. They should not be used to indicate powers of 2 (for example, one kilobit represents 1000 bits and not 1024 bits). The names and symbols for the prefixes corresponding to 210, 220, 230, 240, 250, and 260 are, respectively: kibi, Ki; mebi, Mi; gibi, Gi; tebi, Ti; pebi, Pi; and exbi, Ei. Thus, for example, one kibibyte would be written: 1 KiB = 210 B = 1024 B, where B denotes a byte. Although these prefixes are not part of the SI, they should be used in the field of information technology to avoid the incorrect usage of the SI prefixes.
Citing this page:
Generalic, Eni. "International System (SI) of Units." EniG. Periodic Table of the Elements. KTF-Split, 18 Jan. 2024. Web. {Date of access}. <https://www.periodni.com/international_system_of_units.html>.
Articles and tables